SIAM J. CompuT,
Vol. 24, No. 3, pp. 494-504. June 1995

SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM*
ANDREW V. GOLDBERG!

Key words. shortast paths problem, graph theory, networks, scaling

AMS subject classifications, 68Q20. 68Q25, 68R 10, 05C70

O(/nm log N) time, where n and m are the number of nodes and arcs of the input network,
respectively, and the arc COsts are at least ~N.! QOyr approach is related to the cost-scaling
approach to the minimum-cost flow problem [2], [14], (18], [21].

Previously known algorithms for the problem are as follows, The classical Bellman~Ford

algorithm [1], [8] runs in O(nm) time. Our bound is better than this bound for N = 0(2‘/’;). )

Scaling algorithms of Gabow [1 2] and Gabow and Tarjan [13] are dominated by an assignment
subroutine. The former algorithm runs in O(n’4m log N) time; the latter algorithm runs in
O(/nm log(nN)) time.? Our bound dominates these bounds. The fastest shortest paths
algorithm currently known for Planar graphs (9], [19] runs in O(n'3) time. Our algorithm
runs in O(n'3 log N) time on planar graphs and is competitive for small values of N

Our framework js very flexible. In §§8 and 9 we describe two variations of the
O(J/nmlog N) algorithm. The first variation seems more practical and the second varia-

tion shows the relationship between our method and Dijkstra’s shortest path algorithm [6].

The shortest paths problem is closely related to other problems, such as the minimum-cost
flow. assignment, and minimum-mean length cycle problems. Our method for the shortest
paths problem extends to these problems. In §10 we sketch extensions to the minimum-cost
flow and assignment problems. McCormick [20] shows an extension to the minimum-mean
cycle problem. The resulting algorithms achieve bounds that are competitive with those of
the fastest known algorithms, but are somewhat simpler.

2. Preliminaries. The input to the single-source shortest paths problem is (G, s, ),

in part by the Office of Naval Research Young Investigator award N00014-91-J-1855: National Science Foundation

In [12], [13] these bounds are stated in terms of C, the maximum absolute value of arc costs. As noted by an
anonymous referee, jt js €asy to see that C can be replaced by N.

494

PR A vm e e

where G = (v, E ) is a directed graph.l: E - Risa length function, and s € Vis the




AR A b e A o AT 1150 TR A5

SCALING SHORTEST PATHS ALGORITHMS 495

source node (see, e.g., [4], {23]). The goal is to find shortest paths distances from s to all other
nodes of G or to find a negative length cycle in G. If G has a negative length cycle, we say
that the problem is infeasible. We assume that the length function is integral. We also assume.
without loss of generality, that all nodes are reachable from s in G and that G has no multiple
arcs. The latter assumption allows us 1o refer to an arc by its endpoints without ambiguity.

We denote | V| by n and |E| by m. Let M be the smallest arc length. Define N = ~M if
M < —1 and N = 2 otherwise. Note that N > 2 and I(a) > —~N forall g €E.

A price function is a real-valued function on nodes. Given a price function p, we define
a reduced cost function I, : E— Rby

Lv,w)=1(v, w) + p(v) — p(w).
We say that a price function p is feasible if
8} 1,a)>0 VaekE.
For an € > 0, we say that a price function is e-feasible if
(2) Ip(a)>—-€ VackE.

Given a price function P, we say that an arc a is admissible if l,(@) < 0, and denote the
set of admissible arcs by E p- The admissible graph is defined by G, = (V, E,).

If the length function is nonnegative, the shortest paths problem can be solved in
O(m + nlogn) time [10], or in O(m + nlogn/loglogn) time [11] in a random access
machine computation model that allows certain word operations. We call such a problem
Dijkstra’s shortest paths problem [6]. Given a feasible price function P, the shortest paths
problem can be solved as follows. Let d be a solution to the Dijkstra’s shortest paths problem
(G.s.1,). Then the distance function d’ defined by d'(v) = d(v) + p(v) — p(s) is the solution
1o the input problem.

We restrict our attention to the problem of computing a feasible price function or finding
a negative length cycle in G.

3. Successive approximation and bit scaling frameworks. Our method computes a
sequence of e-feasible price functions with ¢ decreasing by a factor of two at each iteration.
Initially, all the prices are zero and € is the smallest power of two that is greater than N. The
method maintains integral prices. Ateach iteration, the method halves ¢ and applies the REFINE
subroutine, which takes as input a ( 2¢)-feasible price function and returns an e-feasible price
function or discovers a negative length cycle. In the latter case. the computation halts.

LEMMA 3.1. Suppose a price function p is integral and V-feasible. Then for everya ¢ E.
ly(a) 2 0.

Proof. The lemma follows from the fact that Ip(a) is integral and I, (a) > —1. C

Bit scaling, first applied 10 the shortest paths problem by Gabow {12], can be used instead
of successive approximation in all algorithms described in this paper. The bit scaling version
of our method rounds lengths up to a certain precision, initially the smallest power of two
that is greater than N. The lengths and prices are expressed in the units determined by the
precision. Note that since the lengths are rounded up, a negative cycle with respect to the
rounded lengths is also negative with respect to the input lengths.

Each iteration of the algorithm starts with a price function that is feasible with respect
to the current (rounded) lengths. Note that this is true initially because of the choice of the
initial unit. At the beginning of an iteration, the lengths and prices are multiplied by two.
and one is subtracted from the arc lengths as appropriate to obtain the higher precision. The
resulting price function is 1-feasible with respect to the current length function: the feasibility



496 ANDREW V. GOLDBERG

The following lemma is obvious.

LEMMA 3.2. Both the Successive approximation and the bit scaling methods terminate in
O(log N) iterations.

Note that if the current unit in the bit scaling method is U and the current price function
is feasible with respect to the rounded length function, then the price function is U/ -feasible
with respect to the input length function, Thus bit scaling can be viewed as a special case
of successive approximation. The work on the minimum-cost flow problem [18] shows that
successive approximation is more general than bit scaling; in particular, the former can be
easily used to obtain strongly polynomial algorithms,

We describe bit scaling version in the algorithms. This allows us to avoid certain technjcal
details and slightly simplifies the presentation. However, aj] algorithms can be restated in the
successive approximation framework in a straightforward way.

When describing bit scaling implementations of REFINE, we denote the current rounded

cost of a cycle is equal to the length of the cycle, I(T") < 0.
IfFIT) <0, 0r/(T) = ¢ and there is an arc (v, w) such that I, (v, w) < 0 and both y
and w are on T, then the input problem is infeasible and the method terminates. Otherwise,

Proof. The only arcs whose reduced cost js decreased by CUT-RELABEL are the arcs leaving
S. Leta be such an arc, The relabeling decreases Ip(a) by 1. Before the relabeling, §'is closed
and therefore Ip(a) > 0. By integrality, Ip(a) > 1. After the relabeling, 1,(a) > 0, 0

The above lemma implies that CUT-RELABEL does not create improvable nodes. The next




SCALING SHORTEST PATHS ALGORITHMS 497

LEMMA 5.2. Let p be a 1-feasible price function. Let S be a closed set of nodes, and
of tget X € § be a set of improvable nodes such that every improvable arc entering a node of X
s arosses the cut defined by S. After the set S is relabeled, nodes in X are no longer improvable.
Proof. Let p’ be the price function after the relabeling. Let w € X and let (v, w) be an
mprovable arc with respect to p. By the statement of the lemma. v & S. Thus the relabeling
ncreases [, by 1, and, by 1-feasibility of p,Ip(v.x) = 0. a
A simple algorithm based on CUT-RELABEL applies the following procedure to every
cnn,‘ﬁmprovablc node v.
isibig 1. DECYCLE(G)).
casd 7. § « set of nodes reachable from {v} in G,.
s that 3. CUT-RELABEL(S).
an b 1t is casy 1o see that given a 1-feasi
a) in O(nm) time.
wmical g, Faster algorithm. In this section we introduce an O(/nm log N) algorithm for find-
in the ing a feasible price function. Let k denote the number of improvable nodes. At each iteration.
‘ the algorithm either finds a closed set § such that applying CUT-RELABEL to S reduces the

7hid

e

ble price function, this algorithm computes a feasible one

inded, ;mber of improvable nodes by at least k. or a chain S such that applying ELIMINATE-CHAIN
vable 1, § reduces the number of improvable nodes by at least Jk. (The ELIMINATE-CHAIN op-
8 W. | cration is described in the next section.) An iteration takes linear time and is based on the
results of §§5 and 7 and the following lemma, which is related to Dilworth’s theorem (see,
e.g. [7D.
oth v: LEMMA 6.1. Suppose G, is acyclic. Then there exists a chain S © E such that S contains
wise,? at least /k improvable arcs or a closed set S S V such that relabeling S reduces the number
func-1 of improvable nodes by at least Jk. Furthermore, such an S can be found in O(m) time.
hina Proof. Construct a graph G’ by adding a source node r to G, and arcs from r to all nodes
i in V. Note that G’ is acyclic. Define I'(a) = I,(a) for alla € E, andl'(a) = 0 for the
Find: newly added arcs a. The absolute value of the path length with respect to ! is equal to the
ative | number of improvable arcs on the path. Let d' : V — R give the shortest paths distances
(Note | from r with respect to I in G'. Since G is acyclic, d’ can be computed in linear time. Define
50 the | D = maxy |d'].
IfD> Jk, then a shortest path from r to a node v with d’(v) = —D contains a chain

set of | with at least vk improvable arcs.

sed if If D < k. then the partitioning of the set of improvable nodes according to the value

chain | of d’ on these nodes contains at most vk nonempty subsets. Let X be a subset containing

the maximum number of improvable nodes and let i be the value of d’ on X. Observe that X

hich contains at least +/k improvable nodes. Define S = {v € V Id'(v) <i}.

CUT. Clearly X € S. Also, S is closed. This is because if v € § and there is a path from v to
w in G, then the length of this path with respect to I' is nonpositive, so d'(w) < d'(v) < i

fuced’

rlﬁi:oet; ( and therefore w € S. :
: We show that after CUT-RELABEL is applied to S, nodes in X are no longer improvable. ‘
Let x € X and let (v, x) be an improvable arc. Then I’(v,x) = —1 and therefore d'(v) > ;
ia ving d(x)=1i. Ti?us v ¢ Sand (v: w) is not improvable after relabeling of S. 0
losed The efﬁcn’:m implementation of REFINE is described in Fig. 1. The implementation reduces
0 ! the number of improvable nodes k by at least VX at each iteration by eliminating cyclesin Gp,
b next I finding S asinLemma 6.1, and eliminating at least +/k improvable nodes in S using techniques
| " of §§4, 5,and 7. In §7 below we describe a linear time implementation of ELIMINATE-CHAIN.

| ' This implies that an iteration REFINE runs in linear time.

amas.1 LEMMA 6.2. The implementation of REFINE described in this section runs in O(/nm)

:
)
! time.
)

T —




498 ANDREW v, GOLDBERG

Procedure REFINE(p).
k « the number of improvabje nodes;
repeat

DECYCLE( G;):
Sea chain or a seg asin Lemma 6.1;
if Sis a chaip then
ELWINATE-CHAIN(S):
else
CUT-RELABEL( S);
k <~ the number of improvabje nodes;
until k = 0.
return(p);

end.

FiG. 1. An efficiens implementation of REFINE,

Proof. We need 1o bound the number of jterationg Of REFINE. Each iteration reduces k by
at least /%, and Oo(Vk) iterations reduce k by at least a factor of two, The total number of
iterations js bounded by

E /n
zf /7=0“/’7)' 0
~V2

Lemmas 32 and 6.2 imply the following result.

THEOREM 6.3, The shortest Paths algorithm Wwith REFINE implemented g5 described in
this section runs jn O(v/nmlog N) time,

LEmma 7.1 The path T s always admissible, If w; is improvable after iteration i, then
the problem is infeasible,

Proof. The Price function js modified only by CUT-RELABEL At iteration ;, S; contains
w;, all its successors on I, and no other nodeg of I (by induction on i). Therefore L (v;, w;)
changes exactly once during iteration i, when it increases by 1. The arc (vi, w;) is improvable
before the change, angd admissible after the change. Reduced costs of othe




SCALING SHORTEST PATHS ALGORITHMS 499

amount). The CONTRACT(S;) operation collapses all nodes of $; into one node s; and assigns
the price of the new node to be zero. (The price of 5; is actually an increment to the prices
of the nodes in S;.) Reduced costs of the arcs adjacent to the new node remain the same as
immediately before CONTRACT. Note that we have at most one contracted node at any point
during ELIMINATE-CHAIN, but contracted nodes can be nested.

The UNCONTRACT(s;) operation, applied to a contracted node s;, restores the graph as it
was just before the corresponding CONTRACT operation and adds p(s;) to prices of all nodes
in 5;. At the end of the chain elimination process, we apply UNCONTRACT until the original
graph is restored.

Contraction is used for efficiency only and does not change the price function computed
by ELIMINATE-CHAIN, because bylemma7.1 § ¢ Siforl <i<j<r.

Second, we implement the search for the nodes reachable from w; s in the admissible graph
in a way similar 1o Dial’s :mplementation 5] of Dijkstra’s algorithm.* Our implementation
uses a priority queue that holds items with integer key values in the range [0, ..., 2n]; the
amortized cost of the priority queue operations is constant. We assume the following queue
operations.

e enqueue(v, Q): addanodevtoa priority queue Q.

® min(Q): return the minimum key value of elements on Q.

¢ extract-min(Q): remove a node with the minimum key value from Q.

e decrease-key(v. x): decrease the value of key(v) to x.
shift(Q, 8): add 5 to the key values of all elements of Q.
All of these operations except shift are standard: a constant time implementation of shift is
trivial.

Note that if p is 1-feasible and I;(a) > 2n, then a can be deleted from the graph. This is
because in the current iteration. the reduced cost of an arc can decrease by at most n: at the
next iteration, by at most n/2 (measured in the current units), and so on. Thus the reduced
cost of @ will remain nonnegative from now on. We assume that such arcs are deleted as soon
as their reduced costs become large enough.

We define the key assignment function that maps reduced costs into integers as follows,

0 ifx<0

hix) = [ x otherwise.

During the chain elimination computation. each node is unlabeled, labeled, or scanned.
Unlabeled nodes have infinite keys; other nodes have finite keys. The priority queue Q contains
labeled nodes. Initially all nodes are unlabeled. At the beginning of iteration i, key(w;) is set
to zero and w; is added to Q. While @Q is not empty and the minimum key value of the queue
nodes is zero, a node with the minimum key value is extracted from the queue and scanned
s algorithm except that h(l,(a)) is used instead of I,(a) (see Fig. 2). When
this process stops. the scanned nodes are contracted, the new node is marked as scanned, and

its key is set to zero. Then the price of the new node is decreased by I and shift(Q. —1) is
executed. This concludes iteration i

Next we prove correctness of the implementation.

LEMMA 7.2. The sets S; are computed correctly for everyi = 1. . ...1.

Proof. For convenience we define So = @. Consider an iteration i. It is enough to show
that §; is correctif 1 <i <rand Si-1 is correct.

Let v be a node on Q with the zero key value. We claim that v is reachable from w; in the
current admissible graph. To see this, consider two cases. If v was a node on @ with zero key

*In §9 we show that Dial’s implementation can be used directly. The implementation described in this section,
however, gives a better insight into the method.

7
2
£




500 ANDREW V. GOLDBERG

procedure SCAN(v);
for all (v, w) do
if key(w) = oo then
mark w as labeled;
key(w) «— 1, (v, w);
insert(w, Q);
else if w is labeled and key(w) < h{l,(v. w)) then
decrease-key(w., I, (v. w));
mark v as scanned;
end.

FIG. 2. The scan operation.

value at the beginning of the iteration, then v is reachable from w; by Lemma 7.1. Otherwise,
key of v became zero when an arc (u. v) was scanned. We can make an inductive assumption

i
i that u is reachable from w;. By definition of A, h(u,v) =0 implies that l(u.v) <0, and
‘ therefore v is reachable from w;.

Let I" be an admissible path originating at w;. It is €asy to see by induction on the number
of arcs on I that all nodes on " are scanned and added to S;.

: It follows that at the end of iteration i, S; contains all nodes reachable from w; in the
admissible graph. o

: LEMMA 7.3. ELIMINATE-CHAIN runs in O(m) time.

Proof. Each node is scanned at most once because a scanned node is marked as such and
; never added to Q. A contracted node is never scanned. The time to scan a (noncontracted)
! node is proportional to degree of the node, so the total scan time is O (m).

4 The time of a CONTRACT operation is O(1 + n’), where n’ is the number of nodes being
i contracted. The number of CONTRACT operations is at most  and the sum of n’ values over
all CONTRACT operations is at most 2n. Thus the total cost of contract operations is O (n).

] The cost of an UNCONTRACT operation is O(1 + n’), where n’ is the same as in the
corresponding CONTRACT operation. Thus the total time for these operations is O (2n). g
i 8. Alternative chain elimination, In this section we describe an algorithm based on an

alternative implementation of REFINE. We call this implementation REFINE-P. The algorithm
runs in O(y/nmlog N) time.

passes. At the beginning of every pass we
1 check for negative cycles and eliminate zero length admissible cycles using DECYCLE. Then

We compute distances d’ defined in the proof of Lemma 6.1. Given a nonnegative integer M.
we define the key function

3(v) = min(-d'(v), M) Yvev.

(We discuss the choice of initial value of M later.) Sometimes we refer to §(v) as the key of v.
Let Vi denote the set of nodes with key value M. At each iteration of a pass, CUT-RELABEL is
applied to Vy,. Then keys of nodes in V), and all nodes reachable from V), in the admissible
graph are changed to M — 1 and M is decreased by one. This process is repeated until M
reaches zero; at this point the Pass terminates. A pass can be implemented to run in linear
time; the implementation is similar to that of ELIMINATE-CHAIN. We leave the details to the
reader.
The next lemma implies that CUT-RELABEL in used correctly in a pass.

LEMMA 8.1, Immediately before a CUT-RELABEL operation is applied by a pass. Vy, is
closed with respect to the current admissible graph.




Ealn S

SCALING SHORTEST PATHS ALGORITHMS 501

Proof. Before the first CUT-RELABEL operation. Vy is closed by of the definition of 8.
The admissible graph is changed only by the CUT-RELABEL operations, and after every such
operation a search is done to enforce the closeness of V. 8]

Note that the function & is well defined if the admissible graph does not have negative
cycles.

LEMMA 8.2. Ifart the beginning of an iteration of a pass the admissible graph is acyclic,
then

5(v) = min(~d’(v), M) VYveV.

Proof. The proof is by induction on the number of iterations. Keys are initialized so that
the statement of the lemma holds before the first iteration. Suppose that the statement is true
immediately before iteration i, and show that it holds immediately after the iteration.

The d’ value of nodes in Vi increases by one, and the keys of these nodes are decreased
by one at the end of the iteration. The &’ values of a node outside V), changes only if this
node becomes reachable from Vj, in the admissible graph, in which case the new o’ value of
this node is ~(M — 1) or less. The keys of the nodes that become reachable are correctly set
toM—1. 0 .

Recall that D = max, |d’|.

LEMMA 8.3. Suppose that the value of M at the beginning of a pass is equal to t such that
0 < 1 < D. and the admissible graph does not contain negative cycles throughout the pass.
Then the pass decreases the number of improvable nodes by at least 1.

Proof. Givenv. w € V, we say that v > w if there is a negative reduced cost path from
v 1o w in the admissible graph. If the admissible graph does not contain negative cycles, then
“>" defines a partial order on V.

Each iteration of the pass reduces the number of improvable nodes, and the number of
iterations is z. 8]

Next we discuss the choice of initial value of M. Define d; to be the number of improvable
nodes with d’ value of —i (in the beginning of a pass). If the initial value of Misi.0 <i < D,
and there are no negative cycles, the number of improvable nodes is reduced by at least d; by
the first application of CUT-RELABEL. Combining this observation with the above lemma, we
conclude that the pass reduces the number of improvable nodes by max(i. d;). A more careful
analysis shows that the improvement is at least i +d; — 1, since ali improvable nodes with an
initial d’ value of i and at least one improvable node for each value of J.0 < j < i, areno
longer improvable after a pass. Define k; = i +d; — 1, and set M to the index that maximizes
k;. By an argument of Lemma 6.1, ks = Q(/n). This implies the following theorem.

THEOREM 8.4. With the above choice of the initial value of M, the alternative implemen-
1ation of REFINE runs in O(/nm) time.

We would like to note that in practice, a pass is likely to reduce the number of improvable
nodes by more then k;. and it may be more advantageous to chose higer initial values for M.
The algorithm performance is likely to be better than the above worst-case bound suggests.

9. Chain elimination using Dijkstra’s algorithm. In this section we show yet another
implementation of ELIMINATE-CHAIN, This implementation uses Dial’s implementation of
Dijkstra’s algorithm [5), and does not use the CUT-RELABEL operation explicitly.

LetT be apathin G,. An auxiliary network 4 is defined as follows.

e Letd’ be the distance function on I with respect to /, from the beginning of T to all
nodes on I

IR N AR TR P Rt



N s s

502 ANDREW V. GOLDBERG

e Define l'(a) = max(0, /,(a)).

¢ Define d’(v) = 0 for v not on r.

® Add a source node t,comnectrtoally e v and define I'(s, v) = n +d’(v).
ELIMINATE-CHAIN works as follows,

1. Construct the auxiliary network A.

2. Compute shortest paths distances d in A with respectto /',

3. YveV,p'(v) « P(W)+d(v) —n.

4. Replace p by p'.
LEMMA 9.1. The above version of ELIMINATE-CHAIN can be implemented 1o run in linear

time,

L. p' is integral.

2. YaekE, ly >~

3. ELIMINATE-CHAIN does not create improvable arcs,

Proof. The first claim follows from the fact that I’ js integral. The last two claims follow
from the observation thatZ) is nonnegative and. forq € £ J(a) —ly(a)=1ifais improvable
and O otherwise. ]

LEMMA 9.3. If the problem is feasible, then YoonT p'(v) = p(v) + d’'(v).

Proof. Clearly P’(v) < pv) + d’(v). Assume for contradiction that for some node y on
T p'(v) < P(v) +d'(v). For the shortest path P in A from ¢ to v, we have I'(P)<n +d'(v)
and therefore L(P)<n +d’(v). Let (¢, w) be the first arc of P, and let Q be P with (1, w)
deleted. We have

I(Q)=1,(P)=n —d'(w) <d'(v) - d'(w).

Note that since /' is nonnegative, w must be a Successor of v on I'. Let R be the part of
I between v and w. By the definition of ¢’,

L(R) =d'(w) - d'(v).

Thus 1L,(Q) + I,(R) < 0. This is a contradiction because the paths Q and R form a
cycle. g

LEMMA 9.4, If the problem is Seasible and v is an improvable node on T with respect to
P, then v is not improvable with respect 1o p’,

Proof. Assume for contradiction 3(u, v) € E : Iy(u,v) < 0. Let P be the shortest path
in A from 1 to u, let (1. w) be the first arc on P.and let Q be P with (1. w) deleted. Note that
d(u) < d(v), because otherwise Iy (u. v) cannot be negative. Therefore w must be a successor
ofvonT. Let R be the portion of I" between v and w.

Since Q is a shortest path, we have I(Q) = 0. This implies /,,(Q) < 0. By the previous
lemma l,(R) = 0. Therefore the cycle formed by R, 0, and (u. v) has a negative reduced
cost with respect to P’ Thisis a contradiction. a

Remark. Implications of Lemma 9.4 are stronger than those of Lemma 7.1: if the problem
is feasible, the former lemma guarantees that all improvable nodes on I" are “fixed,” and the
latter guarantees only that the nodes that are heads of the improvable arcs on I" are “fixed.”

10. Extensions to the minimum-cost circulation and assignment problems, Ourshort-
est path method extends to the minimum-cost circulation problem. The intuitive difference is
that when a shortest path algorithm finds a negative cycle, it terminates; when the correspond-
ing minimum-cost circulation algorithm finds a negative cycle, it increases the flow around the

F R S R A s e s e e



SCALING SHORTEST PATHS ALGORITHMS 503

cycle so that an arc on the cycle becomes saturated, and continues. In our discussion below,
we assume that the reader is familiar with {17], [ 18]. We denote the reduced costs by ¢, and
the residual graph by G,.

We define admissible arcs to be residual arcs with negative reduced costs, as in [17],
(18]. Without loss of generality, we assume that a feasible initial circulation is available. A
simple algorithm based on the CUT-RELABEL operation does the following at each iteration.
First, it cancels admissible cycles; this can be done in O(mlogn) time (see, e.g., [17]).
Next, the algorithm picks an improvable node v, finds the set S of nodes reachable from
v in the admissible graph, and executes CUT-RELABEL(S). The resulting algorithm runs in
O(nmlogn log(nC)) time (note that the initial flow may have residual arcs with reduced cost
of —C with respect to the zero price function). We can also use the TIGHTEN operation to
obtain 2 minimum-cost flow algorithm with the same running time. These algorithms are
variations of the tighten-and-cancel algorithms of [17).

In the above minimum-cost flow algorithms, the admissible graph changes due to flow
augmentations in addition to price changes. Because of this fact, our analysis of the improved
algorithms for the shortest paths problem does not seem to extend to the minimum-cost flow
problem. In the special case of the assi gnment problem. the analysis of the improved shortest
path algorithm can be extended to obtain an O(/nmlog(nC)) time algorithm. This bound
matches the fastest known scaling bound {13], but the algorithm is different. The idea is to
define the admissible graph and improvable arcs so that an improvable node has exactly one
improvable arc going into it and the residual capacity of this arc is one. This is possible because
of the special structure of the assignment problem. When an admissible cycle is canceled. all
improvable arcs on this cycle are saturated and there are no improvable nodes on the cycle
after the cancellation.

11. Concluding remarks. We described a framework for designing scaling algorithms.
The CUT-RELABEL operation can be used to design algorithms within this framework. The
framework is very flexible and can be used to design numerous algorithms for the problem.
Using these results, we improved the time bound for the problem. We believe that further
investigation of this framework is a promising research direction.

One can apply the version of ELIMINATE-CHAIN described in §9 without using scaling. It
can be shown that in this case if the problem is feasible, all negative reduced costs of arcs
on I' are changed to nonnegative ones, and reduced costs of other arcs do not become more
negative. This suggests a possibility of solving the general shortest paths problem in O(/m)
Dijkstra shortest paths computations. The problem, however, is that our way of dealing with
the first case of Lemma 6.1 does not work without scaling.

Our definition of e-feasibility corresponds to that of €-optimality for minimum cost flows
(14]), [18]. If one follows [14], {18] faithfully, however. one would define e-feasibility using
l,(@) > —e€ instead of (2) and not consider arcs with zero reduced costs admissible. Under
these definitions, the admissible graph cannot have zero length cycles, so there is no need for
DECYCLE. However, these definitions seem to lead to an O( log(nN)) bound on the number of
iterations of the scaling loop of the method. The righten operation described in [17] also leads
to an implementation of the method that runs in O(log(nN)) iterations of the scaling loop.

The techniques introduced in this paper have a practical impact. In particular, the tech-
niques of §8 proved to be crucial in our implementation of price update computation in a
minimum-cost flow algorithm [15], which resulted in a significant improvement of perfor-
mance.

Preliminary experiments with the algorithm of this paper, conducted as a part of the
experimental study described in [3], suggest that the algorithm is not the best one 10 use in




504 ANDREW V. GOLDBERG

Practice. Although on some problem families the algorithm significantly outperformed the
classical methods, it was dominated by the algorithm of [16] on all problem classes studied.

Acknowledgments. I am grateful to Tomasz Radzik for suggesting an important idea
for the proof of Lemma 6.2 and the stronger statement of Lemma 9.4, and to Bob Tarjan for
suggesting a clean implementation of DECYCLE. I would also like to thank Serge Plotkin, Eva
Tardos, and David Shmoys for useful discussions and comments on a draft of this paper.

REFERENCES

{1} R.E.BELIMAN, On 4 routing problem, Quan. Appl. Math., 16 ( 1958), pp. 87-90.
(2] R.G.BLanp anp D. L. JENSEN. On the computational behavior of a polynomial-time nerwork flow algorithm,
Math, Programming, 54 (1992), pp. 1-41.

[4] T. H. Cormen. C. E. LEISE.RSON\. AND R. L. RIVEST, Introduction fo Algorithms, MIT Press, Cambridge, MA,
1990.

{5] R. B. DAL, Algorithm 360: Shortest path Jorest with topological ordering, Comm. ACM, 12 (1969),
pp. 632-633.

i [6] E.Ww. DUKSTRA, A note on two problems in connection with graphs, Numer. Math., 1 (1959), PP. 269-271.
{7} R.P.Diworry, A decomposition theorem Jor partially ordered sets. Ann. Math., 51 ( 1950). pp. 161-166.

[12] H.N. Ganow. Scaling algorithms for network problems, J. Comput. Systems Sci.. 31 (1985), pp. 148-168.
[13] H.N.Gasow ANDR.E TARIAN, Faster scaling algorithms for nerwork problems, SIAM J. Comput., 18 (1989),

(15]

- An efficient implemeniation of a scaling minimum-cost flow algorithm, in Proc. 3rd Integer Prog. and
Combinatorial Opt. Conf.. 1993, pp. 251-266.

[16] A. V. GoLpsERG AND T. RADZIK. A heurisric improvement of the Bellman-Ford algorithm, Appl. Math. Lent..
6(1993), pp. 3-6,

[17] A V. Goipserg anp R. E. Taruan, Finding minimum-cost circulations by canceling negative cycles. J. Assoc.
Comput. Mach.. 36 (1989), pp. B73-8RB5.

[18) . Finding minimum.cost circulations by successive approximation, Math, Oper. Res., 15 (1990,
Pp. 430-466.

{19] R. J. Lirton anp R, E. Taman, A separator theorem for planar graphs. SIAM J. Appl. Math.. 36 (1979),
pp. 177-189

[20] S. T McCormick, Approximate binary search algorithms for mean cuss and cycles, Oper. Res. Lett., 14 (1993),
Pp. 129-132

[21] H.Rock. Scaling lechniques for minimal cost nerwork flows. in U. Pape, ed.. Discrete Structures and Algorithms.
Carl Hansen, Miinich, 1980, pp. 181-191.
[22] R. E. Taman. Depth-first search and linear graph algorithms, SIAM 1. Comput.. 1 (1972), pp. 146-160.

[23) -Data Strucrures and Nenwork A Igorithms, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1983,

_







